Craniofacial morphogenesis is regulated in part by signaling from the Endothelin receptor type A (EDNRA). Pathogenic variants in EDNRA signaling pathway components EDNRA, GNAI3, PCLB4, and EDN1 cause Mandibulofacial Dysostosis with Alopecia (MFDA), Auriculocondylar syndrome (ARCND) 1, 2, and 3, respectively. However, cardiovascular development is normal in MFDA and ARCND individuals, unlike Ednra knockout mice. One explanation may be that partial EDNRA signaling remains in MFDA and ARCND, as mice with reduced, but not absent, EDNRA signaling also lack a cardiovascular phenotype. Here we report an individual with craniofacial and cardiovascular malformations mimicking the Ednra -/- mouse phenotype, including a distinctive micrognathia with microstomia and a hypoplastic aortic arch. Exome sequencing found a novel homozygous missense variant in EDNRA (c.1142A>C; p.Q381P). Bioluminescence resonance energy transfer assays revealed that this amino acid substitution in helix 8 of EDNRA prevents recruitment of G proteins to the receptor, abrogating subsequent receptor activation by its ligand, Endothelin-1. This homozygous variant is thus the first reported loss-of-function EDNRA allele, resulting in a syndrome we have named Oro-Oto-Cardiac Syndrome. Further, our results illustrate that EDNRA signaling is required for both normal human craniofacial and cardiovascular development, and that limited EDNRA signaling is likely retained in ARCND and MFDA individuals. This work illustrates a straightforward approach to identifying the functional consequence of novel genetic variants in signaling molecules associated with malformation syndromes. © 2020 Wiley Periodicals, Inc.Self-propelled autonomous nano/microswimmers are at the forefront of materials science. These swimmers are expected to operate in highly confined environments, such as between the grains of soil or in the capillaries of the human organism. To date, little attention is paid to the problem that in such a confined environment the fuel powering catalytic nano/microswimmers can be exhausted quickly and the space can be polluted with the product of the catalytic reaction. In addition, the motion of the nano/microswimmers may be influenced by the confinement. These issues are addressed here, showing the influence of the size of the capillary and length of the micromotor on the motion and the influence of the depletion of the fuel and excess of the exhaust products. Theoretical modeling is provided as well to bring further insight into the observations. This article shows challenges that these systems face and stimulates research to overcome them. © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Porous tantalum nitride (Ta3 N5 ) single crystals, combining structural coherence and porous microstructure, would substantially improve the photoelectrochemical performance. The structural coherence would reduce the recombination of charge carriers and maintain excellent transport properties while the porous microstructure would not only reduce photon scattering but also facilitate surface reactions. Here, we grow bulk-porous Ta3 N5 single crystals on a two-centimeter scale with (002), (023), and (041) facets, respectively, and show significantly enhanced photoelectrochemical performance. We show the preferential facet growth of porous crystals in a lattice reconstruction strategy in relation to lattice match and lattice channel. We present the facet engineering to enhance light absorption, exciton lifetime and transport properties. The porous Ta3 N5 single crystal boosts photoelectrochemical oxidation of alcohols with the (002) facet showing the highest performance of >99?% alcohol conversion and >99?% aldehyde/ketone selectivity. © 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.Lithium (Li) metal batteries (LMBs) are enjoying a renaissance due to the high energy densities. However, they still suffer from the problem of uncontrollable Li dendrite and pulverization caused by continuous cracking of solid electrolyte interphase (SEI) layers. To address these issues, developing spontaneously built robust polymer-reinforced SEI layers during electrochemical conditioning can be a simple yet effective solution. Herein, a robust homopolymer of cyclic carbonate urethane methacrylate is presented as the polymer matrix through an in situ polymerization method, in which cyclic carbonate units can participate in building a stable polymer-integrated SEI layer during cycling. The as-investigated gel polymer electrolyte (GPE) assembled LiCoO2 /Li metal batteries exhibit a fantastic cyclability with a capacity retention of 92% after 200 cycles at 0.5 C (1 C = 180 mAh g-1 ), evidently exceeding that of the counterpart using liquid electrolytes. It is noted that the anionic ring-opening polymerization of the cyclic carbonate units on the polymer close to the Li metal anodes enables a mechanically reinforced SEI layer, thus rendering excellent compatibility with Li anodes. The in situ formed polymer-reinforced SEI layers afford a splendid strategy for developing high voltage resistant GPEs compatible with Li metal anodes toward high energy LMBs. © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Recent investigations have suggested that microRNA-129-5p (miR-129-5p) is commonly dysregulated in multiple types of malignancies. https://www.selleckchem.com/products/jzl184.html Nevertheless, the roles of miR-129-5p in human oral squamous cell carcinoma (OSCC) are not well explored. Herein, we demonstrated that miR-129-5p was down-expressed in OSCC cells and tissues. Moreover, miR-129-5p overexpression restrained the growth, migration ability, and invasiveness of OSCC cells. Notably, high-mobility group box 1 protein (HMGB1) was identified as a downstream target of miR-129-5p. Additional, knockdown of HMGB1 suppressed the growth and aggressive phenotypes of human OSCC cells. Importantly, re-expression of HMGB1 impaired the inhibitory impacts of miR-129-5p on the metastasis of OSCC cells. Altogether, these results implied that miR-129-5p restrained the aggressiveness of OSCC cells through modulating HMGB1. © 2020 The Authors. The Kaohsiung Journal of Medical Sciences published by John Wiley & Sons Australia on behalf of Kaohsiung Medical University.