Exploiting superacid activation, the reactivity of aminonitriles was enhanced through the transient formation of highly reactive ammonium-nitrilium superelectrophiles. Demonstrated by using in situ low-temperature NMR experiments and confirmed by X-ray diffraction analysis, these dications can be intramolecularly trapped by non-activated alkenes to generate unsaturated piperidinones, including enantioenriched ones, in a straightforward way.The enzyme protein disulfide isomerase (PDI) is essential for the correct folding of proteins and the activation of certain cell surface receptors, and is a promising target for the treatment of cancer and thrombotic conditions. A previous high-throughput screen identified the commercial compound STK076545 as a promising PDI inhibitor. To confirm its activity and support further biological studies, a resynthesis was pursued of the reported β-keto-amide with an N-alkylated pyridone at the α-position. Numerous conventional approaches were complicated by undesired fragmentations or rearrangements. However, a successful 5-step synthetic route was achieved using an aldol reaction with an α-pyridone allyl ester as a key step. An X-ray crystal structure of the final compound confirmed that the reported structure of STK076545 was achieved, however its lack of PDI activity and inconsistent spectral data suggest that the commercial structure was misassigned.Retinal, the vitamin A aldehyde, is a potent photosensitizer that plays a major role in light-induced damage to vertebrate photoreceptors. 11-Cis retinal is the light-sensitive chromophore of rhodopsin, the photopigment of vertebrate rod photoreceptors. It is isomerized by light to all-trans, activating rhodopsin and beginning the process of light detection. All-trans retinal is released by activated rhodopsin, allowing its regeneration by fresh 11-cis retinal continually supplied to photoreceptors. The released all-trans retinal is reduced to all-trans retinol in a reaction using NADPH. We have examined the photooxidation mediated by 11-cis and all-trans retinal in single living rod photoreceptors isolated from mouse retinas. Photooxidation was measured with fluorescence imaging from the oxidation of internalized BODIPY C11, a fluorescent dye whose fluorescence changes upon oxidation. We found that photooxidation increased with the concentration of exogenously added 11-cis or all-trans retinal to metabolically compromised rod outer segments that lacked NADPH supply. In dark-adapted metabolically intact rod outer segments with access to NADPH, there was no significant increase in photooxidation following exposure of the cell to light, but there was significant increase following addition of exogenous 11-cis retinal. The results indicate that both 11-cis and all-trans retinal can mediate light-induced damage in rod photoreceptors. In metabolically intact cells, the removal of the all-trans retinal generated by light through its reduction to retinol minimizes all-trans retinal-mediated photooxidation. However, because the enzymatic machinery of the rod outer segment cannot remove 11-cis retinal, 11-cis-retinal-mediated photooxidation may play a significant role in light-induced damage to photoreceptor cells.Azido stretch modes in a variety of azido-derivatized nonnatural amino acids and nucleotides have been used as a site-specific infrared (IR) probe for monitoring changes in their conformations and local electrostatic environments. The vibrational bands of azide probes are often accompanied by complex line shapes with shoulder peaks, which may arise either from incomplete background subtraction, Fermi resonance, or multiple conformers. The isotope substitution in the infrared probe has thus been introduced to remove Fermi resonances without causing a significant perturbation to the structure. Here, we synthesized and labeled the mid-N atoms of aliphatic azide derivatives with 15N to study the effects of isotope labelling on their vibrational properties. The FT-IR spectra of the aliphatic azide with asymmetric lineshape became a single symmetric band upon isotope substitution, which might be an indication of the removal of the hidden Fermi resonance from the system. We also noticed that the 2D-IR spectrum of unlabeled aliphatic azide has cross-peaks, even though it is not apparently identifiable. The 1D slice spectra obtained from the 2D-IR spectra reveal the existence of a hidden Fermi resonance peak. Furthermore, we show that this weak Fermi resonance does not produce discernible oscillatory beating patterns in the IR pump-probe spectrum, which has been used as evidence of the Fermi resonance. Therefore, we confirm that isotope labelling combined with 2D-IR spectroscopy is the most efficient and incisive way to identify the origin of small shoulder peaks in the linear and nonlinear vibrational spectra of various IR probe molecules.Heat shock proteins (Hsps) stabilize the newly synthesized polypeptide chains preventing them from aggregation. They contribute to systemic response under stress and thus behave as signaling molecules. Hsp70 has been detected on the surface of stressed cells. https://www.selleckchem.com/products/GDC-0449.html It translocates to the extracellular environment through the plasma membrane without causing cell death. But the interaction of the protein with the membrane leading to the export process remains elusive. Hsp70 has a tendency to generate channels within lipid bilayers, and this has been a driving force for studying protein-lipid interactions. Transport of these proteins across the membrane paves their pathways for performing the desired function. We have attempted to characterize how the interaction of Hsp70 with negatively charged phospholipids affects the structure of lipids. This study will help in explaining the transport mechanism of proteins that are devoid of defined signaling pathways. The interaction of amino acids of Hsp70 with the head and tail group leads to the rearrangement of the hydration layer in contact with the bilayers. Critical analysis of the results obtained from small-angle X-ray scattering along with QCM-D provides valuable insights to analyze the effect of Hsp70 adsorption on an anionic POPS lipid bilayer. |