Recent advances in non-linear computational and dynamical modelling have opened up the possibility to parametrize dynamic neural mechanisms that drive complex behavior. Importantly, building models of neuronal processes is of key importance to fully understand disorders of the brain as it may provide a quantitative platform that is capable of binding multiple neurophysiological processes to phenotype profiles. In this study, we apply a newly developed adaptive frequency-based model of whole-brain oscillations to resting-state fMRI data acquired from healthy controls and a cohort of attention deficit hyperactivity disorder (ADHD) subjects. As expected, we found that healthy control subjects differed from ADHD in terms of attractor dynamics. However, we also found a marked dichotomy in neural dynamics within the ADHD cohort. Next, we classified the ADHD group according to the level of distance of each individual's empirical network from the two model-based simulated networks. Critically, the model was mirrored The macaque monkey inferior parietal lobe (IPL) is a structurally heterogeneous brain region, although the number of areas it contains and the anatomical/functional relationship of identified subdivisions remains controversial. Neurotransmitter receptor distribution patterns not only reveal the position of the cortical borders, but also segregate areas associated to different functional systems. Thus we carried out a multimodal quantitative analysis of the cyto- and receptor architecture of the macaque IPL to determine the number and extent of distinct areas it encompasses. We identified four areas on the IPL convexity arranged in a caudo-rostral sequence, as well as two areas in the parietal operculum, which we projected onto the Yerkes19 surface. We found rostral areas to have relatively smaller receptor fingerprints than the caudal ones, which is in an agreement with the functional gradient along the caudo-rostral axis described in previous studies. The hierarchical analysis segregated IPL areas into two clusters the caudal one, contains areas involved in multisensory integration and visual-motor functions, and rostral cluster, encompasses areas active during motor planning and action-related functions. The results of the present study provide novel insights into clarifying the homologies between human and macaque IPL areas. The ensuing 3D map of the macaque IPL, and the receptor fingerprints are made publicly available to the neuroscientific community via the Human Brain Project and BALSA repositories for future cyto- and/or receptor architectonically driven analyses of functional imaging studies in non-human primates.Using advanced diffusion MRI, we aimed to assess the microstructural properties of normal-appearing white matter (NAWM) preceding conversion to white matter hyperintensities (WMHs) using 3-tissue diffusion signal compositions in ischemic stroke. Data were obtained from the Cognition and Neocortical Volume After Stroke (CANVAS) study. Diffusion-weighted MR and high-resolution structural brain images were acquired 3- (baseline) and 12-months (follow-up) post-stroke. WMHs were automatically segmented and longitudinal assessment at 12-months was used to retrospectively delineate NAWM voxels at baseline converting to WMHs. NAWM voxels converting to WMHs were further dichotomized into either "growing" WMHs if NAWM adhered to existing WMH voxels, or "isolated de-novo" WMHs if NAWM was unconnected to WMH voxels identified at baseline. Microstructural properties were assessed using 3-tissue diffusion signal compositions consisting of white matter-like (WM-like TW), gray matter-like (GM-like TG), and cerebrospinal fluid-like (CSF-like TC) signal fractions. https://www.selleckchem.com/products/azd1656.html Our findings showed that NAWM converting to WMHs already exhibited similar changes in tissue compositions at baseline to WMHs with lower TW and increased TC (fluid-like, i.e. free-water) and TG compared to persistent NAWM. We also found that microstructural properties of persistent NAWM were related to overall WMH burden with greater free-water content in patients with high WMH load. These findings suggest that NAWM preceding conversion to WMHs are accompanied by greater fluid-like properties indicating increased tissue water content. Increased GM-like properties may indicate a more isotropic microstructure of tissue reflecting a degree of hindered diffusion in NAWM regions vulnerable to WMH development. These results support the usefulness of microstructural compositions as a sensitive marker of NAWM vulnerability to WMH pathogenesis.In recent years, specific cortical networks have been proposed to be crucial for sustaining consciousness, including the posterior hot zone and frontoparietal resting state networks (RSN). Here, we computationally evaluate the relative contributions of three RSNs - the default mode network (DMN), the salience network (SAL), and the central executive network (CEN) - to consciousness and its loss during propofol anaesthesia. Specifically, we use dynamic causal modelling (DCM) of 10 min of high-density EEG recordings (N = 10, 4 males) obtained during behavioural responsiveness, unconsciousness and post-anaesthetic recovery to characterise differences in effective connectivity within frontal areas, the posterior 'hot zone', frontoparietal connections, and between-RSN connections. We estimate - for the first time - a large DCM model (LAR) of resting EEG, combining the three RSNs into a rich club of interconnectivity. Consistent with the hot zone theory, our findings demonstrate reductions in inter-RSN connectivity in the parietal cortex. Within the DMN itself, the strongest reductions are in feed-forward frontoparietal and parietal connections at the precuneus node. Within the SAL and CEN, loss of consciousness generates small increases in bidirectional connectivity. Using novel DCM leave-one-out cross-validation, we show that the most consistent out-of-sample predictions of the state of consciousness come from a key set of frontoparietal connections. This finding also generalises to unseen data collected during post-anaesthetic recovery. Our findings provide new, computational evidence for the importance of the posterior hot zone in explaining the loss of consciousness, highlighting also the distinct role of frontoparietal connectivity in underpinning conscious responsiveness, and consequently, suggest a dissociation between the mechanisms most prominently associated with explaining the contrast between conscious awareness and unconsciousness, and those maintaining consciousness.