[[FrontPage]] > [[翻訳作業場>翻訳作業場トップページ]] > [[FlightGearフライトスクール]] / [[第I部>../]] / 第2章
RIGHT:The FlightGear Flight School Version 0.0.3
----
#contents

//**2.1 FlightGear Fundamentals [#v66624de]

//***2.1.1 Installation and Start [#p46d9bbd]
//The installation of FlightGear...


*第2章 基礎 [#j7519939]
**2.1 FlightGearの基本 [#beccec9a]
***2.1.1 インストールと始動 [#b4127979]
ビルド済みバイナリ、またはソースコード(コンパイルが必要)からのFlightGearのインストールは、Getting-Started- Manual(訳注: 現在はThe FlightGear Manual(邦訳: FlightGearマニュアル)に統合)の中でしっかりと文書化されています。
FlightGearには、航空機をメニューから選択する仕組みが存在しないので、シェルからプログラムを起動するのがベストでしょう(訳注: いくつかのOSでは起動用プログラムを利用できます)。
これによりユーザは、FlightGearに対する様々なオプション設定を飛ばすことが出来ます。
これらのオプションについては必要に応じて後の章で説明します。
単純にマニュアルに従ってFlightGearを起動してください。
#br
CENTER:&ref(fsc-000forupload.jpg);
#br
注1:MS Windows:スタートメニュー→全てのプログラム→FlightGear0.9.10→FlightGear Launcher
#br
#br
***2.1.2 概要 [#t9dba4cc]
プログラムを始動したとき、あなたはコックピットの中に座っているでしょう。デフォルトではセスナ172(2D)です。
あなたの正面に、全て違った計器、スイッチ、それとノブが見えるでしょう。
あなたは外を見ると、サンフランシスコ国際空港(ICAOコード:KSFO)が見えるでしょう。
shiftキーと数字のキーを同時に押すと以下の表に書かれている通り、いろいろな方向を見ることが出来ます。
#br
,,左,中央,右
,前,Shift+7,Shift+8,Shift+9~
,中,Shift+4,,Shift+6~
,後,Shift+1,Shitf+2,Shift+3~
(NumLockオフの時に有効)
#br
(訳注:表の形式をより視覚的に分かりやすいように変えてみた。別のキーの組み合わせもあるので、http://www.jp.flightgear.org/workshop/index.php?%A5%AD%A1%BC%A5%DC%A1%BC%A5%C9%C1%E0%BA%EE#sb111a08を参照してください。)
#br
あなたはしばしば、エンジン音をちょっと邪魔に感じるかもしれません。
「p」キーを押してシミュレーションをポーズするか、「??」を押して(訳注:訳者環境では何も起こらなかった)プログラムの出す音をミュートにしてください。
「v」キーを押すと、視点をコックピット、追尾視点(chase view,hericopter view)、タワーからの視点(tower view)の間で切り替えます。
特に、タワーからの視点のときに、ときどき航空機を見つけるのに、「x」でのズームイン、「X」でのズームアウトは大変役に立つ。
コックピット視点に戻って、あなたは計器盤を「P」キーで完全に消すことができる、もしくは「s」キーで重要な計器のみ表示することが出来る。
これらのキーの大半はオン/オフ切り替えスイッチのように働きます。例えば、「P」キーを一度押すとコックピットの計器盤を消し、もう一度押すと計器盤がもう一度表示されます。
大体、このチュートリアルの間、必要なときに「定義済みのキーとコマンド」は説明されるでしょう。
プログラムに飛びつきたがっている利用者は、直接Getting-Started-ManualかShort Referrenceを読むべきです。
「p」キーを押してシミュレーションをポーズするか、「??」を押して(訳注:訳者環境では何も起こらなかった)プログラムの出す音をミュートにしてください。~
「v」キーを押すと、視点をコックピット、追尾視点(chase view,hericopter view)、タワーからの視点(tower view)の間で切り替えます。~
特に、しばしばタワーからの視点で飛行機を見つけるのに、「x」でのズームイン、「X」でのズームアウトは大変役に立ちます。~
コックピット視点に戻って、あなたは計器盤を「P」キーで完全に消すことができます、もしくは「s」キーで重要な計器のみ表示することが出来ます。~
これらのキーの大半はオン/オフ切り替えスイッチのように働きます。例えば、「P」キーを一度押すとコックピットの計器盤を消し、もう一度押すと計器盤がもう一度表示されます。~
大体、このチュートリアルの間、必要なときに「定義済みのキーとコマンド」は説明されるでしょう。~
プログラムを早く利用したい人は、直接Getting-Started-ManualかShort Referrenceを読むべきです。

**2.2 航空力学 [#lb713b82]

***2.2.1 空気 [#ee38b7ad]
我々が飛ぶためには、機体は何を身につけているだろうか:空気です!
これは、非常に些細に聞こえるかもしれませんが、あらゆる飛行において不可欠です。(そして、事実上、あります。)
第13章で天気に関する詳細について議論するでしょう。~
空気は違うガスの混合物です。それは、体積比で78%の窒素と、21%の酸素、そして1%の不活性ガス(ヘリウム、アルゴン、ネオン)、二酸化炭素。
これに加えて、空気はいくらかの水蒸気(体積比0%〜5%)を含んでいる。この湿度の値は、他のガスの割合に依存します。(不正確)
これに加えて、空気はいくらかの水蒸気(体積比0%〜5%)を含んでいます。この湿度の値は、他のガスの割合に依存します。(不正確)
空気中のこれらの全ての分子の重さのため、圧力は大気圏内の機体の全てに作用しています。また、空気自身も。
ガスの圧縮性のために、圧力は空気を高さに依存して密度が異なっています。また、天候の変化によっても変わってきます。飛行の多くの局面で、密度が重要になるので、後のセクションを見てください。
航空機の多くの計器では、空気圧もしくは圧力差で働いていて、そしてそれは密度に依存して、またエンジンの効率は密度に依存します。

***2.2.2 4つの力 [#c13970bd]
基本的に、飛行で飛行機に作用する4つの力があります:揚力、重力、推力、そして空気抵抗です。
それらのうち、揚力と重力、推力と空気抵抗はお互い反対方向に働いています。正常な水平飛行をしているとき、推力=空気抵抗、揚力=重力となる。(訳注:原文を直訳すると「〜これらの4つの力が均衡なままで残っている」ですが,勘違いするのを防ぐために表現を変更)
これは、上昇も下降もせず、加速も減速もしていないということを意味しています。
CENTER:&ref(fsc-001.jpg);
-揚力~
大抵、揚力は航空機を上に持ち上げる力です。
胴体が空気中で動いたら、それに対する空気の流れは厳密に標準でないとき、胴体は持ち上げられるか、地面に向かって押し付けられるかのどちらかでしょう。
例えば、動いている車の窓から手を出して、前側を上向きに指すように、少し手を曲げてください。あなたの手は上に上がるでしょう。
(訳注:安全には十分注意しましょう。)
//・・・そういえば、「80キロで窓から手をだしたら○○○○の感触」というネタがあったなあw
この効果は胴体に沿うように風を流すことによってより高めることが出来ます。
航空機の主翼は平坦ではなく、カーブしています。今、主翼に空気の流れを前から当てると、主翼外面に沿って風が流れます。
翼型により、翼の下側の空気は翼の上側より短い距離を通らなければならない。すると、上側の流れが加速されます。
(訳注:http://ja.wikipedia.org/wiki/%E7%BF%BC%E5%9E%8B および http://www.jal.co.jp/jiten/dict/p051.html も参照)
下側の遅い流れよりも、上側の流れの方が速いので、圧力が下がります。(ベルヌーイの定理を変形して適用すると、圧力p×流速v=一定)
CENTER:&ref(fsc-002.jpg);

#br
この翼の圧力差が結果として揚力となる。この揚力は通常翼の上に向かって働く。
この力は翼型、対気速度、翼面積、空気密度などの幾つかの要因に依存している。
この翼の圧力差が結果として揚力となります。この揚力は通常翼の上に向かって働きます。
この力は翼型、対気速度、翼面積、空気密度などの幾つかの要因に依存しています。
#br

-重力~
重力は揚力とは反対側に働く力で、常に地面に向かって働いています。

#br
-推力~
推力は飛行機を前方向に動かす力です。多くの場合(ハンググライダーを除く)推力は1台以上のプロペラ付きの(ピストン)エンジン、もしくはターボプロップ、ターボジェットエンジンから発生します。
(訳注:現在はターボジェットエンジンは戦闘機の分野においても使われておらず、低バイパス比のターボファンエンジンを使用する場合が多い)
我々はシンプルなピストンエンジンから始めようと思う。
推力は飛行機を前方向に動かす力です。多くの場合(ハンググライダーを除く)推力は1台以上のプロペラ付きの(ピストン)エンジン、もしくはターボプロップ、ターボジェットエンジンから発生します。~
(訳注:現在はターボジェットエンジンは戦闘機の分野においても使われておらず、低バイパス比のターボファンエンジンを使用する場合が多い)~
私たちはシンプルなピストンエンジンから始めようと思います。
他のタイプのエンジンに関する議論は、後の適切な章でなされるでしょう。
プロペラの動力はエンジンより供給され、それは自動車用のエンジンとほぼ同じです。
プロペラの回転により空気を飛行機の後ろに押し出します。ニュートンの作用・反作用の法則(この場合、プロペラが空気に与えた力=飛行機が前に進む力)により、飛行機は前に進むでしょう。
#br
具体的に、飛行機はプロペラを回転させることによって前に進むことができるのでしょうか。それは2〜4枚で一つの翼を形成しています。
「翼」という表現はこの文脈においては間違いではありません。プロペラに付いた2枚の翼が「揚力」と同様なものを生じさせています。
上記の「揚力」の説明との違いは、プロペラの回転は飛行機の前後軸上にある点です。
(訳注:多発固定翼機ではプロペラの回転軸は飛行機の前後軸と平行になります。また、V-22などの特殊なものやヘリコプターは除外。)

プロペラが回転するとき、空気は翼の前部から後部(主翼で例えるなら、上側から下側)、側面に分かれて流れます。その結果、飛行機を動かす力をもたらします。
揚力と同様に、プロペラによる推力も空気密度に依存しています。もし密度が高いならば、より多くの空気の分子(窒素分子、酸素分子など)を動かすでしょう、そしてより大きな推力を得られるでしょう。
私たちが首尾よく最初の始動をしたとき(訳注:翻訳自信なし。シミュレーションを開始した時のことだろうか?)、があなたは高い山で必要な離陸距離と、海面高度で必要な離陸距離を比較することが出来ます。
私たちは、後のほうにある「Flight Plannning」の項目においてこの面からも議論したいと思います。
#br
-空気抵抗~
(以下翻訳中)


----
編集メモ
-Flight Schoolの翻訳作業用に雛形を作成しました。2007/07/13 toshi~
-翻訳済み部分までアップロード 2007/07/17 sambar~
-toshiさんのご協力により誤訳部分、誤字脱字の修正 2007/07/17 sambar~


トップ   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS